ANNUAL REVIEW

Reviewed by	Date	Reviewed by	Date

PRINCIPLE

INTENDED USE

MG reagent, when used in conjunction with UniCel® DxC 600/800 System(s) and Synchron® Systems Multi Calibrator, is intended for the quantitative determination of magnesium concentration in human serum, plasma or urine.

CLINICAL SIGNIFICANCE

Determination of magnesium is useful in assessing several diseases and conditions. High magnesium is associated with uremia, dehydration, diabetic acidosis, Addison’s disease, and increased medicinal intake of magnesium, such as in the treatment of preeclampsia (hypertension induced by pregnancy). Low magnesium is associated with malabsorption syndrome, acute pancreatitis, hypoparathyroidism, chronic alcoholism and delirium tremens, chronic glomerulonephritis, aldosteronism, digitalis intoxication, and protracted I. V. feeding.

METHODOLOGY

MG reagent is used to measure the MG concentration by a timed endpoint method.\(^1,2\) In the reaction, MG combines with calmagite to form a stable chromogen. The product is formed rapidly giving reproducible results with a minimum of interferences.

The SYNCHRON® System(s) automatically dilutes urine samples and proportions the appropriate sample and reagent volumes into a cuvette. The ratio used is one part sample to 103 parts reagent for serum or plasma and one part diluted sample to 103 parts reagent for urine. The system monitors the change in absorbance at 520 nanometers. This change in absorbance is directly proportional to the concentration of magnesium in the sample and is used by the System to calculate and express the magnesium concentration.

CHEMICAL REACTION SCHEME

```
Calmagite + Mg²⁺ → Mg²⁺ - Calmagite Complex
```
SPECIMEN

TYPE OF SPECIMEN

Biological fluid samples should be collected in the same manner routinely used for any laboratory test. Freshly drawn serum or plasma are the preferred specimens. Freshly collected urine may also be used for testing. Acceptable anticoagulants are listed in the PROCEDURAL NOTES section of this chemistry information sheet. Whole blood is not recommended for use as a sample.

SPECIMEN STORAGE AND STABILITY

1. Tubes of blood are to be kept closed at all times and in a vertical position. It is recommended that the serum or plasma be physically separated from contact with cells within two hours from the time of collection.

2. Separated serum or plasma should not remain at room temperature longer than 8 hours. If assays are not completed within 8 hours, serum or plasma should be stored at +2°C to +8°C. If assays are not completed within 48 hours, or the separated sample is to be stored beyond 48 hours, samples should be frozen at -15°C to -20°C. Frozen samples should be thawed only once. Analyte deterioration may occur in samples that are repeatedly frozen and thawed.4

3. It is recommended that urine specimens be collected in a metal-free container. Specimens should be acidified to pH 1.0. Assays should be performed within 2 hours of collection.6

Additional specimen storage and stability conditions as designated by this laboratory:

SAMPLE PREPARATION

Sample preparation is not required. Urine samples are diluted (1:10) automatically by the system using the DIL1 cartridge.

SAMPLE VOLUME

The optimum volume, when using a 0.5 mL sample cup, is 0.3 mL of sample. For optimum primary sample tube volumes and minimum volumes, refer to the Primary Tube Sample Template for your system.

CRITERIA FOR UNACCEPTABLE SPECIMENS

Refer to the PROCEDURAL NOTES section of this chemistry information sheet for information on unacceptable specimens.

Criteria for sample rejection as designated by this laboratory:
PATIENT PREPARATION

Special instructions for patient preparation as designated by this laboratory:

SPECIMEN HANDLING

Special instructions for specimen handling as designated by this laboratory:

REAGENTS

CONTENTS

Each kit contains the following items:
Two MG Reagent Cartridges (2 x 100 tests)

VOLUMES PER TEST

Serum or Plasma

<table>
<thead>
<tr>
<th>Sample Volume</th>
<th>3 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Reagent Volume</td>
<td>308 µL</td>
</tr>
<tr>
<td>Cartridge Volumes</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>280 µL</td>
</tr>
<tr>
<td>B</td>
<td>28 µL</td>
</tr>
<tr>
<td>C</td>
<td>– –</td>
</tr>
</tbody>
</table>
Urine

Sample Dilution Volumes

<table>
<thead>
<tr>
<th>Volume Type</th>
<th>Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Volume</td>
<td>20</td>
</tr>
<tr>
<td>Diluent Volume</td>
<td>180</td>
</tr>
<tr>
<td>Diluted Sample Volume</td>
<td>3</td>
</tr>
<tr>
<td>Total Reagent Volume</td>
<td>308</td>
</tr>
</tbody>
</table>

Cartridge Volumes

<table>
<thead>
<tr>
<th>Volume Type</th>
<th>Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>280</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
</tr>
</tbody>
</table>

REACTIVE INGREDIENTS

REAGENT CONSTITUENTS

Calmagite (Dye Reagent) 0.15 mmol/L
Alkaline Solution (pH > 13.0)
Also non-reactive chemicals necessary for optimal system performance.

EUROPEAN HAZARD CLASSIFICATION

Magnesium Reagent (Compartment B) C;R35 Causes severe burns.
S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.
S36/37/39 Wear suitable protective clothing, gloves and eye/face protection.
S45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

MATERIALS NEEDED BUT NOT SUPPLIED WITH REAGENT KIT

Synchro® Systems Multi Calibrator
At least two levels of control material
Saline
DIL 1 for urine samples

REAGENT PREPARATION

No preparation is required.

ACCEPTABLE REAGENT PERFORMANCE

The acceptability of a reagent is determined by successful calibration and by ensuring that quality control results are within your facility’s acceptance criteria.

REAGENT STORAGE AND STABILITY

MG reagent when stored unopened at room temperature is stable until the expiration date on the cartridge label. Once opened, the reagent is stable for 7 days at +2°C to +8°C unless the expiration date is exceeded. DO NOT FREEZE.
DIL 1 stored unopened at room temperature is stable until the expiration date indicated on each cartridge. Once opened, DIL 1 is stable for 60 days on instrument or until the expiration date, if sooner.

Reagent storage location:

CALIBRATION

CALIBRATOR REQUIRED

Synchron® Systems Multi Calibrator

CALIBRATOR PREPARATION

No preparation is required.

CALIBRATOR STORAGE AND STABILITY

If unopened, the Synchron® Systems Multi Calibrator may be stored at -15°C to -20°C until the expiration date printed on the calibrator bottle. Opened calibrators that are resealed and stored at +2°C to +8°C are stable for 20 days unless the expiration date is exceeded.

⚠️ CAUTION

Because this product is of human origin, it should be handled as though capable of transmitting infectious diseases. Each serum or plasma donor unit used in the preparation of this material was tested by United States Food and Drug Administration (FDA) approved methods and found to be negative for antibodies to HIV and HCV and nonreactive for HbsAg. Because no test method can offer complete assurance that HIV, hepatitis B virus, and hepatitis C virus or other infectious agents are absent, this material should be handled as though capable of transmitting infectious diseases. This product may also contain other human source material for which there is no approved test. The FDA recommends such samples to be handled as specified in Centers for Disease Control’s Biosafety Level 2 guidelines.7

Calibrator storage location:

CALIBRATION INFORMATION

1. The system must have a valid calibration curve in memory before control or patient samples can be run.

2. Under typical operating conditions the MG reagent cartridge must be calibrated every 7 days and also with certain parts replacement or maintenance procedures, as defined in the UniCel DxC 600/800 System Instructions For Use (IFU) manual.
3. This assay has within-lot calibration available. For detailed calibration instructions, refer to the UniCel DxC 600/800 System Instructions for Use (IFU) manual.

4. The system will automatically perform checks on the calibration and produce data at the end of calibration. In the event of a failed calibration, the data will be printed with error codes and the system will alert the operator of the failure. For information on error codes, refer to the UniCel DxC 600/800 System Instructions For Use (IFU) manual.

TRACEABILITY

For Traceability information refer to the Calibrator instructions for use.

QUALITY CONTROL

At least two levels of control material should be analyzed daily. In addition, these controls should be run with each new calibration, with each new reagent cartridge, and after specific maintenance or troubleshooting procedures as detailed in the appropriate system manual. More frequent use of controls or the use of additional controls is left to the discretion of the user based on good laboratory practices or laboratory accreditation requirements and applicable laws.

The following controls should be prepared and used in accordance with the package inserts. Discrepant quality control results should be evaluated by your facility.

<table>
<thead>
<tr>
<th>Table 1.0 Quality Control Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL NAME</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

TESTING PROCEDURE(S)

1. If necessary, load the reagent onto the system.
2. After reagent load is completed, calibration is required.
3. Program samples and controls for analysis.
4. After loading samples and controls onto the system, follow the protocols for system operations.

For detailed testing procedures, refer to the UniCel DxC 600/800 System Instructions For Use (IFU) manual.

CALCULATIONS

The SYNCHRON® System(s) performs all calculations internally to produce the final reported result. The system will calculate the final result for sample dilutions made by the operator when the dilution factor is entered into the system during sample programming.

REPORTING RESULTS

Equivalency between the SYNCHRON CX, SYNCHRON LX, and UniCel DxC 600/800 Systems has been established. Chemistry results between these systems are in agreement and data from representative systems may be shown.
REFERENCE INTERVALS

Each laboratory should establish its own reference intervals based upon its patient population. The following reference intervals were taken from literature and a study performed on SYNCHRON Systems.8

Table 2.0 Reference intervals

<table>
<thead>
<tr>
<th>INTERVALS</th>
<th>SAMPLE TYPE</th>
<th>CONVENTIONAL UNITS</th>
<th>S.I. UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature</td>
<td>Serum or Plasma</td>
<td>1.6 – 2.6 mg/dL</td>
<td>0.66 – 1.07 mmol/L</td>
</tr>
<tr>
<td></td>
<td>Urine (timed)</td>
<td>72.9 – 121.5 mg/24 hrs</td>
<td>3.00 – 5.00 mmol/24 hrs</td>
</tr>
<tr>
<td>SYNCHRON</td>
<td>Serum or Plasma</td>
<td>1.8 – 2.5 mg/dL</td>
<td>0.74 – 1.03</td>
</tr>
</tbody>
</table>

Refer to References (9, 10, 11) for guidelines on establishing laboratory-specific reference intervals.

Additional reporting information as designated by this laboratory:

PROCEDURAL NOTES

ANTICOAGULANT TEST RESULTS

1. If plasma is the sample of choice, the following anticoagulants were found to be compatible with this method based on a study of 20 healthy volunteers:

Table 3.0 Compatible Anticoagulantsa

<table>
<thead>
<tr>
<th>ANTICOAGULANT</th>
<th>LEVEL TESTED FOR IN VITRO INTERFERENCE</th>
<th>AVERAGE PLASMA-SERUM BIAS (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium Heparin</td>
<td>14 Units/mL</td>
<td>NSIp</td>
</tr>
<tr>
<td>Lithium Heparin</td>
<td>14 Units/mL</td>
<td>NSI</td>
</tr>
<tr>
<td>Sodium Heparin</td>
<td>14 Units/mL</td>
<td>NSI</td>
</tr>
</tbody>
</table>

a Data shown was collected using SYNCHRON CX Systems. Equivalency between SYNCHRON LX Systems has been established by Deming regression analysis to SYNCHRON CX Systems.

b NSI = No Significant Interference (within ±0.16 mg/dL or 4%).

2. The following anticoagulants were found to be incompatible with this method:
Table 4.0 Incompatible Anticoagulants

<table>
<thead>
<tr>
<th>ANTICOAGULANT</th>
<th>LEVEL TESTED FOR IN VITRO INTERFERENCE</th>
<th>PLASMA-SERUM BIAS (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>1.5 mg/mL</td>
<td>-2.4</td>
</tr>
<tr>
<td>Potassium Oxalate/Sodium Fluoride</td>
<td>2.0 / 2.5 mg/mL</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

a Data shown was collected using SYNCHRON CX Systems. Equivalency between SYNCHRON LX Systems has been established by Deming regression analysis to SYNCHRON CX Systems.

b Bias is based on worst case instead of average. Plus (+) or minus (-) signs in this column signify positive or negative bias.

LIMITATIONS

1. Erythrocytes contain magnesium; therefore, hemolyzed samples should not be used for magnesium analysis.
2. EDTA, sodium citrate, and potassium oxalate are known to interfere with this method.
3. Some gadolinium magnetic resonance contrast agents such as Omniscan, Optimark, and Magnevist may interfere with this method.

INTERFERENCES

1. The following substances were tested for interference with this methodology:

Table 5.0 Interferences

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>SOURCE</th>
<th>LEVEL</th>
<th>OBSERVED EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilirubin (unconjugated)</td>
<td>Bovine</td>
<td>30 mg/dL</td>
<td>NSI</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>RBC hemolysate</td>
<td>200 mg/dL</td>
<td>≤+0.2 mg/dL</td>
</tr>
<tr>
<td>Lipemia</td>
<td>Intralipid</td>
<td>150 mg/dL</td>
<td>≤+0.16 mg/dL</td>
</tr>
<tr>
<td>Calcium</td>
<td>NA</td>
<td>22 mg/dL</td>
<td>NSI</td>
</tr>
<tr>
<td>Copper</td>
<td>NA</td>
<td>500 µg/dL</td>
<td>NSI</td>
</tr>
<tr>
<td>Iron</td>
<td>NA</td>
<td>500 µg/dL</td>
<td>NSI</td>
</tr>
<tr>
<td>Methyl dopa</td>
<td>Methyl dopa HCl</td>
<td>0.3 mg/mL</td>
<td>NSI</td>
</tr>
<tr>
<td>Zinc</td>
<td>NA</td>
<td>280 µg/dL</td>
<td>NSI</td>
</tr>
</tbody>
</table>

a Plus (+) or minus (-) signs in this column signify positive or negative interference.
b NSI = No Significant Interference (within ±0.16 mg/dL or 4%).
c Intralipid is a registered trademark of KabiVitrum, Inc., Clayton, NC 27250.
d NA = Not applicable.

2. Lipemic samples >2+ should be ultra-centrifuged and the analysis performed on the infranate.
3. Refer to References (13,14,15) for other interferences caused by drugs, disease and preanalytical variables.

PERFORMANCE CHARACTERISTICS

ANALYTIC RANGE

The SYNCHRON® System(s) method for the determination of this analyte provides the following analytical range:
Table 6.0 Analytical Range

<table>
<thead>
<tr>
<th>SAMPLE TYPE</th>
<th>CONVENTIONAL UNITS</th>
<th>S.I. UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum or Plasma</td>
<td>0.1 – 7.0 mg/dL</td>
<td>0.04 – 2.88 mmol/L</td>
</tr>
<tr>
<td>Urine</td>
<td>1.0 – 70.0 mg/dL</td>
<td>0.4 – 28.8 mmol/L</td>
</tr>
</tbody>
</table>

Samples with concentrations exceeding the high end of the analytical range should be diluted with saline and reanalyzed.

REPORTABLE RANGE (AS DETERMINED ON SITE):

Table 7.0 Reportable Range

<table>
<thead>
<tr>
<th>SAMPLE TYPE</th>
<th>CONVENTIONAL UNITS</th>
<th>S.I. UNITS</th>
</tr>
</thead>
</table>

SENSITIVITY

Sensitivity is defined as the lowest measurable concentration which can be distinguished from zero with 95% confidence. Sensitivity for MG determination is 0.1 mg/dL (0.04 mmol/L) for serum or plasma, and 1.0 mg/dL (0.40 mmol/L) for urine.

EQUIVALENCY

Equivalency was assessed by Deming regression analysis of patient samples to accepted clinical methods.

Serum or plasma (in the range of 0.2 to 6.7 mg/dL):

\[
Y \text{ (SYNCHRON LX Systems)} = 0.949X + 0.13
\]

\[
N = 73
\]

\[
\text{MEAN (SYNCHRON LX Systems)} = 2.29
\]

\[
\text{MEAN (SYNCHRON CX7 DELTA)} = 2.28
\]

\[
\text{CORRELATION COEFFICIENT (r)} = 0.998
\]

Urine (in the range of 1.4 to 63.6 mg/dL):

\[
Y \text{ (SYNCHRON LX Systems)} = 0.979X + 0.45
\]

\[
N = 78
\]

\[
\text{MEAN (SYNCHRON LX Systems)} = 22.28
\]

\[
\text{MEAN (SYNCHRON CX7 DELTA)} = 22.29
\]

\[
\text{CORRELATION COEFFICIENT (r)} = 0.998
\]

Refer to References (16) for guidelines on performing equivalency testing.

PRECISION

A properly operating SYNCHRON® System(s) should exhibit precision values less than or equal to the following:
Table 8.0 Precision Values

<table>
<thead>
<tr>
<th>TYPE OF PRECISION</th>
<th>SAMPLE TYPE</th>
<th>1 SD mg/dL</th>
<th>1 SD mmol/L</th>
<th>CHANGEOVER VALUE* mg/dL</th>
<th>CHANGEOVER VALUE* mmol/L</th>
<th>% CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within-run</td>
<td>Serum or Plasma</td>
<td>0.11</td>
<td>0.04</td>
<td>4.4</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Urine</td>
<td>0.8</td>
<td>0.3</td>
<td>26.7</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Total</td>
<td>Serum or Plasma</td>
<td>0.17</td>
<td>0.06</td>
<td>4.4</td>
<td>1.6</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Urine</td>
<td>1.2</td>
<td>0.5</td>
<td>26.7</td>
<td>10.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Comparative performance data for the SYNCHRON® System(s) evaluated using the NCCLS Proposed Guideline EP5-T2 appears in the table below. Each laboratory should characterize their own instrument performance for comparison purposes.

Table 9.0 NCCLS EP5-T2 Precision Estimate Method

<table>
<thead>
<tr>
<th>TYPE OF IMPRECISION</th>
<th>SAMPLE TYPE</th>
<th>No. Systems</th>
<th>No. Data Pointsa</th>
<th>Test Mean Value (mg/dL)</th>
<th>EP5-T2 Calculated Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within-run</td>
<td>Serum Control 1</td>
<td>1</td>
<td>80</td>
<td>1.12</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Serum Control 2</td>
<td>1</td>
<td>80</td>
<td>3.63</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Urine Control 1</td>
<td>1</td>
<td>80</td>
<td>7.98</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Urine Control 2</td>
<td>1</td>
<td>80</td>
<td>33.72</td>
<td>0.61</td>
</tr>
<tr>
<td>Total</td>
<td>Serum Control 1</td>
<td>1</td>
<td>80</td>
<td>1.12</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Serum Control 2</td>
<td>1</td>
<td>80</td>
<td>3.63</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Urine Control 1</td>
<td>1</td>
<td>80</td>
<td>7.98</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Urine Control 2</td>
<td>1</td>
<td>80</td>
<td>33.72</td>
<td>0.93</td>
</tr>
</tbody>
</table>

a The point estimate is based on the pooled data from one system, run for twenty days, two runs per day, two observations per run on an instrument operated and maintained according to the manufacturer’s instructions.

NOTICE
These degrees of precision and equivalency were obtained in typical testing procedures on a SYNCHRON LX® System and are not intended to represent the performance specifications for this reagent.

ADDITIONAL INFORMATION

For more detailed information on UniCel DxC Systems, refer to the appropriate system manual.

Beckman Coulter, the Beckman Coulter Logo, Synchron, UniCel and DxC are trademarks of Beckman Coulter, Inc and are registered in the USPTO.

SHIPPING DAMAGE
If damaged product is received, notify your Beckman Coulter Clinical Support Center.

REVISION HISTORY

Revision AE
Revised Quality Control section.
Revision AF
Updated corporate address; updated European Hazard Classification.

Revision AG
Added Revision History.

Revision AH
Added new language requirement: Czech, and Korean.

Revision AJ
Removed references to CX and LX systems as they are discontinued effective 12/2013.
Added Beckman Coulter trademark statement and disclaimer.

FOOTNOTES

Registered trademarks are the property of their respective owners.
REFERENCES

Beckman Coulter Ireland, Inc., Mervue Business Park, Mervue, Galway, Ireland 353 91 774068

Beckman Coulter, Inc., 250 S. Kraemer Blvd., Brea, CA 92821 U.S.A.